This new result is highly unexpected, but seems credible. And, even a modest tweak to existing data could reduce the estimated proportions of "dark energy" substantially.
Five years ago, the Nobel Prize in Physics was awarded to three astronomers for their discovery, in the late 1990s, that the universe is expanding at an accelerating pace.
Their conclusions were based on analysis of Type Ia supernovae - the spectacular thermonuclear explosion of dying stars - picked up by the Hubble space telescope and large ground-based telescopes. It led to the widespread acceptance of the idea that the universe is dominated by a mysterious substance named '
dark energy' that drives this accelerating expansion.
Now, a team of scientists led by Professor Subir Sarkar of Oxford University's Department of Physics has cast doubt on this standard cosmological concept. Making use of a vastly increased data set - a catalogue of 740 Type Ia supernovae, more than ten times the original sample size - the researchers have found that the evidence for acceleration may be flimsier than previously thought, with the data being consistent with a constant rate of expansion. . . .
'However, there now exists a much bigger database of supernovae on which to perform rigorous and detailed statistical analyses. We analysed the latest catalogue of 740 Type Ia supernovae - over ten times bigger than the original samples on which the discovery claim was based - and found that the evidence for accelerated expansion is, at most, what physicists call "3 sigma". This is far short of the "5 sigma" standard required to claim a discovery of fundamental significance.
There is other data available that appears to support the idea of an accelerating universe, such as information on the cosmic microwave background - the faint afterglow of the Big Bang - from the Planck satellite. However, Professor Sarkar said: 'All of these tests are indirect, carried out in the framework of an assumed model, and the
cosmic microwave background is not directly affected by dark energy. Actually, there is indeed a subtle effect, the late-integrated Sachs-Wolfe effect, but this has not been convincingly detected.
'So it is quite possible that we are being misled and that the apparent manifestation of dark energy is a consequence of analysing the data in an oversimplified theoretical model - one that was in fact constructed in the 1930s, long before there was any real data. A more sophisticated theoretical framework accounting for the observation that the universe is not exactly homogeneous and that its matter content may not behave as an ideal gas - two key assumptions of standard cosmology - may well be able to account for all observations without requiring dark energy. Indeed, vacuum energy is something of which we have absolutely no understanding in fundamental theory.'
More precision measurements that can test the data independently are on the way in the near future to confirm and disfavor the dark energy concept.
The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
J.T. Nielsen, A. Guffanti an S. Sarkar, "
Marginal evidence for cosmic acceleration from Type Ia supernovae" 6 Scientific Reports 35596 (October 21, 2016) (open access).
The paper is actually a year old. It's the common situation of journal publication, press release, blizzard of media coverage.
ReplyDeleteI have not found any informed analysis of the paper, pro or con, in the physics literature. Also, Sarkar has been arguing for years that the apparent cosmic acceleration might be an illusion, while admitting that his alternative models are somewhat contrived.
The statistical analysis said to be flawed.
ReplyDelete