[M]easurements from the Planck mission published in 2018 indicate a lower value of 67.66 ± 0.42 (km/s)/Mpc, although, even more recently, in March 2019, a higher value of 74.03 ± 1.42 (km/s)/Mpc has been determined using an improved procedure involving the Hubble Space Telescope. The two measurements disagree at the 4.4σ level, beyond a plausible level of chance. The resolution to this disagreement is an ongoing area of active research.
The chart below from the same link summarizes some of these recent measurements.
But from a fundamental laws of physics and cosmology perspective, if these results are confirmed, the consequences are profound.
Any changes to Hubble's constant over time demand that the simple cosmological constant explanation of these observations be discarded, effectively rewriting a part of the equations of general relativity with deep cosmological implications, in favor of a new theory.
Possible Resolutions Of The Hubble Tension
Time will tell how the Hubble tension is resolved.
There are basically three possible resolutions to the Hubble tension (more than one of which could each provide a partial explanation).
1. Indirect Early Universe Estimates Are Wrong. The CMB based determination of Hubble's constant in the early universe (about 380 million years after the Big Bang according to the LambdaCDM model) is flawed somehow, in a way that underestimates the value of the Hubble constant in the early universe.
McGaugh, for example, has suggested that this is a plausible full or partial explanation.
For example, maybe the Planck collaboration omitted one or more theoretically relevant components of the formula for converting CMB observations to a Hubble constant value that were reasonably believed to be negligible (indeed, it almost certainly did so). But it could be that one or more of the components omitted from the Planck collaboration's calculated value of Hubble's constant from the CMB data actually increase the calculated value by something on the order of 9% because some little known factor makes the component(s) omitted have a value much higher than one would naively expect.
Also, since the indirect determination of the value of Hubble's constant from CMB measurements is model dependent, any flaw in the model used could cause its determination of Hubble's constant to be inaccurate.
An indirect CMB based determination of Hubble's constant is implicitly making a LamdaCDM model dependent determination of how much the universe had expanded since the Big Bang at the time that the CMB arose. If the LambdaCDM model's indirect calculation of Hubble's constant predicts that the CMB arose later than it actually did, then its indirect determination of the value of Hubble's constant would also be too low, and a high early time value of Hubble's constant would resolve the problem.
This is a plausible possibility because the James Webb Space Telescope has confirmed that the "impossible early galaxies problem" is real, implying that there is definitely some significant flaw (of not too far from the right magnitude and in the right direction) in the LambdaCDM models description of the early universe, although the exactly how much earlier than expected galaxies arose in the early universe (which is a mix of cutting edge astronomy, statistical analysis, and LambdaCDM modeling) hasn't been pinned down with all much precision yet.
The impossible early galaxy problem is that galaxies form significantly earlier after Big Bang than the LambdaCDM model predicts that they should. The galaxies seen by the JWST at about redshift z=6 (about 1.1 billion years after the Big Bang) are predicted in the LambdaCDM model to apear at about redshift z=4 (about 1.7 billion years after the Big Bang).
If the CMB arose more swiftly after the Big Bang than the LambdaCDM model predicts it did but the amount by which the universe had expanded at that point was about the same, in much the same way that galaxy formation actually occurred earlier than the LambdaCDM model predicted that it would, then that could fully or partially resolve the Hubble tension.
The relationship between Hubble's constant and the amount of expansion in the universe at any given point in time is non-linear (it's basically exponential). So, figuring out how much of a roughly 55% discrepancy at 1.1 billion years after the Big Bang in galaxy formation time translates into in Hubble constant terms, at about 380 million years after the Big Bang, is more involved than I have time to work out today, even though it is really only an advanced pre-calculus problem once you have the equations set up correctly. But my mathematical intuition is solid enough to suspect that the effect isn't too far from the 9% target to within the uncertainties in the relevant measurements.
2. Late Time Direct Measurements Share A Systemic Error. The multiple different, basically independent, methods of measuring Hubble's constant in the late universe are flawed in a way that causes them to overestimate Hubble's constant in roughly the same amount.
The problem is that since several different methods have been used and reach similar higher values for Hubble's constant in the late universe, so the issue can't be one that is particular to only a single method of determining Hubble's constant.
For example, one explanation that has been explored is that the little corner of the universe around the Milky Way from the perspective of solar system observers has some local dynamics, or has local distortions that impact light at the relevant wavelengths reaching us in the solar system (e.g. due to localized gravitational lensing or local distributions of interstellar gas and dust) that has nothing to do with the expansion of the universe, but is indistinguishable, by the most precise existing methods used to measure Hubble's constant in the late time universe, from an increase in Hubble's constant of about 6.4 (km/s)/Mpc.
I've bookmarked a number of papers exploring this hypothesis but haven't had the time to analyze them as a group or compile them in a blog post.
3. Hubble's Constant Isn't Constant. The third possibility is that Hubble's constant genuinely isn't constant and the rate of the expansion of the universe attributed to a cosmological constant in the equations of General Relativity is mistaken. Thus, new physics are necessary to explain these observations.
This is, of course, the most exciting possible answer. But I'll save consideration of some of these alternative theories to a cosmological constant for another post (and I won't address them in the comments to this post either).
Suffice it to say that there are many proposals for alternatives that could resolve the Hubble tension out there in the literature.
I'd love to see a paper that examines the set of assumptions, premises in the LCDM model and CMB analysis. And demonstrating the degree of tuning needed for each to bring the early HC inline with the near-time figures. Along the lines of what you did here discussing the ramifications of a dating error of the CMB snapshot.
ReplyDeleteI'll blog one if I see it. There may have been one done around the time of the Planck results being released, but I didn't read one like that at the time.
ReplyDeleteAlong the lines of a CMB timing issue: "We investigate the extent to which modifying the ionization history at cosmological recombination can relieve the Hubble tension, taking into account all relevant datasets and considering the implications for the galaxy clustering parameter S8 and the matter density fraction Ωm." https://arxiv.org/abs/2411.16678
ReplyDelete