Monday, April 29, 2019

Another Modified Gravity Paper

This paper has interesting things to say, but thinking about gravity modification in terms of a particular radial distance, rather than in terms of a particular gravitational field strength seems to miss one of the core insights about any gravitational modification that must follow from MOND's phenomenological successes. I've listed the references below the fold as it is a quite nice list of papers on gravitational approaches to dark matter phenomena.

Galactic dynamics and long-range quantum gravity

We explore in a systematic way the possibility that long-range quantum gravity effects could play a role at galactic scales and could be responsible for the phenomenology commonly attributed to dark matter. We argue that the presence of baryonic matter breaks the scale symmetry of the de Sitter (dS) spacetime generating an IR scale r0, corresponding to the scale at which the typical dark matter effects we observe in galaxies arise. It also generates a huge number of bosonic excitations with wavelength larger than the size of the cosmological horizon and in thermal equilibrium with dS spacetime. We show that for rr0 these excitations produce a new component for the radial acceleration of stars in galaxies which leads to the result found by McGaugh {\sl et al.} by fitting a large amount of observational data and with the MOND theory. We also propose a generalized thermal equivalence principle and use it to give another independent derivation of our result. Finally, we show that our result can be also derived as the weak field limit of Einstein's general relativity sourced by an anisotropic fluid.
Comments:20 pages, no figures
Subjects:General Relativity and Quantum Cosmology (gr-qc); Cosmology and Nongalactic Astrophysics (astro-ph.CO); Other Condensed Matter (cond-mat.other); Superconductivity (cond-mat.supr-con); High Energy Physics - Theory (hep-th)
Cite as:arXiv:1904.11835 [gr-qc]
(or arXiv:1904.11835v1 [gr-qc] for this version)
[1] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov. Phys. Dokl. 12 (1968) 1040–1041. [,51(1967)]. 
[2] T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state,” Phys. Rev. Lett. 75 (1995) 1260–1263, arXiv:gr-qc/9504004 [gr-qc].  
[3] T. Padmanabhan, “Thermodynamical Aspects of Gravity: New insights,” Rept. Prog. Phys. 73 (2010) 046901, arXiv:0911.5004 [gr-qc]. 
[4] T. Padmanabhan, “Gravity and Spacetime: An Emergent Perspective,” in Springer Handbook of Spacetime, A. Ashtekar and V. Petkov, eds., pp. 213–242. 2014. 
[5] T. Jacobson, “Entanglement Equilibrium and the Einstein Equation,” Phys. Rev. Lett. 116 no. 20, (2016) 201101, arXiv:1505.04753 [gr-qc]. 
[6] D. Oriti, “The universe as a quantum gravity condensate,” Comptes Rendus Physique 18 (2017) 235–245, arXiv:1612.09521 [gr-qc]. 
[7] T. Padmanabhan, “The Atoms Of Space, Gravity and the Cosmological Constant,” Int. J. Mod. Phys. D25 no. 07, (2016) 1630020, arXiv:1603.08658 [gr-qc]. 
[8] E. P. Verlinde, “Emergent Gravity and the Dark Universe,” SciPost Phys. 2 no. 3, (2017) 016, arXiv:1611.02269 [hep-th]. 
[9] N. S. Linnemann and M. R. Visser, “Hints towards the emergent nature of gravity,” Stud. Hist. Philos. Mod. Phys. B64 (2018) 1–13, arXiv:1711.10503 [physics.hist-ph]. 
[10] S. De, T. P. Singh, and A. Varma, “Quantum gravity as an emergent phenomenon,” arXiv:1903.11066 [gr-qc]. 
[11] G. Dvali and C. Gomez, “Self-Completeness of Einstein Gravity,” arXiv:1005.3497 [hep-th]. 
[12] G. Dvali, S. Folkerts, and C. Germani, “Physics of Trans-Planckian Gravity,” Phys. Rev. D84 (2011) 024039, arXiv:1006.0984 [hep-th]. 
[13] G. Dvali, G. F. Giudice, C. Gomez, and A. Kehagias, “UV-Completion by Classicalization,” JHEP 08 (2011) 108, arXiv:1010.1415 [hep-ph]. 
[14] G. Dvali, C. Gomez, and A. Kehagias, “Classicalization of Gravitons and Goldstones,” JHEP 11 (2011) 070, arXiv:1103.5963 [hep-th]. 
[15] G. Dvali and C. Gomez, “Black Hole’s Quantum N-Portrait,” Fortsch. Phys. 61 (2013) 742–767, arXiv:1112.3359 [hep-th]. 
[16] G. Dvali and C. Gomez, “Black Holes as Critical Point of Quantum Phase Transition,” Eur. Phys. J. C74 (2014) 2752, arXiv:1207.4059 [hep-th]. 
[17] G. Dvali and C. Gomez, “Black Hole’s 1/N Hair,” Phys. Lett. B719 (2013) 419–423, arXiv:1203.6575 [hep-th]. 
[18] P. Binetruy, “Vacuum energy, holography and a quantum portrait of the visible Universe,” arXiv:1208.4645 [gr-qc]. 
[19] W. Mueck, “On the number of soft quanta in classical field configurations,” Can. J. Phys. 92 no. 9, (2014) 973–975, arXiv:1306.6245 [hep-th]. 
[20] R. Casadio, A. Giugno, and A. Giusti, “Matter and gravitons in the gravitational collapse,” Phys. Lett. B763 (2016) 337–340, arXiv:1606.04744 [hep-th]. 
[21] R. Casadio, A. Giugno, A. Giusti, and M. Lenzi, “Quantum corpuscular corrections to the Newtonian potential,” arXiv:1702.05918 [gr-qc]. 
[22] M. Cadoni, R. Casadio, A. Giusti, W. Mueck, and M. Tuveri, “Effective Fluid Description of the Dark Universe,” Phys. Lett. B776 (2018) 242–248, arXiv:1707.09945 [gr-qc]. 
[23] M. Cadoni, R. Casadio, A. Giusti, and M. Tuveri, “Emergence of a Dark Force in Corpuscular Gravity,” Phys. Rev. D97 no. 4, (2018) 044047, arXiv:1801.10374 [gr-qc]. 
[24] G. Compère, “Are quantum corrections on horizon scale physically motivated?,” 2019. arXiv:1902.04504 [gr-qc]. 
[25] G. t. Hooft, “The quantum black hole as a theoretical lab, a pedagogical treatment of a new approach,” in 56th International School of Subnuclear Physics: From gravitational waves to QED, QFD and QCD (ISSP 2018) Erice, Italy, June 14-23, 2018. 2019. arXiv:1902.10469 [gr-qc]. 
[26] Supernova Search Team Collaboration, A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201 [astro-ph]. 
[27] A. A. Penzias and R. W. Wilson, “A Measurement of excess antenna temperature at 4080-Mc/s,” Astrophys. J. 142 (1965) 419–421. 
[28] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571 (2014) A16, arXiv:1303.5076 [astro-ph.CO]. 
[29] R. B. Tully and J. R. Fisher, “A New method of determining distances to galaxies,” Astron. Astrophys. 54 (1977) 661–673. 
[30] S. S. McGaugh, J. M. Schombert, G. D. Bothun, and W. J. G. de Blok, “The Baryonic Tully-Fisher relation,” Astrophys. J. 533 (2000) L99–L102, arXiv:astro-ph/0003001 [astro-ph]. 
[31] S. McGaugh, F. Lelli, and J. Schombert, “Radial Acceleration Relation in Rotationally Supported Galaxies,” Phys. Rev. Lett. 117 no. 20, (2016) 201101, arXiv:1609.05917 [astro-ph.GA]. 
[32] M. Milgrom, “A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Astrophys. J. 270 (1983) 365–370. 
[33] M. Milgrom, “MOND theory,” Can. J. Phys. 93 no. 2, (2015) 107–118, arXiv:1404.7661 [astro-ph.CO]. 
[34] S. Hossenfelder, “Covariant version of Verlinde’s emergent gravity,” Phys. Rev. D95 no. 12, (2017) 124018, arXiv:1703.01415 [gr-qc]. 
[35] D.-C. Dai and D. Stojkovic, “Comment on ’Covariant version of Verlinde’s emergent gravity’,” Phys. Rev. D96 no. 10, (2017) 108501, arXiv:1706.07854 [gr-qc]. 
[36] R.-G. Cai, S. Sun, and Y.-L. Zhang, “Emergent Dark Matter in Late Universe on Holographic Screen,” arXiv:1712.09326 [hep-th]. 
[37] L. Smolin, “MOND as a regime of quantum gravity,” Phys. Rev. D96 no. 8, (2017) 083523, arXiv:1704.00780 [gr-qc]. 
[38] M. Milgrom, “The modified dynamics as a vacuum effect,” Phys. Lett. A253 (1999) 273–279, arXiv:astro-ph/9805346 [astro-ph]. 
[39] M. H. P. M. van Putten, “Galaxy rotation curves in de Sitter space,” arXiv e-prints (Nov, 2014) arXiv:1411.2665, arXiv:1411.2665 [physics.gen-ph]. 
[40] R. P. Woodard, “Nonlocal metric realizations of MOND,” Can. J. Phys. 93 no. 2, (2015) 242–249, arXiv:1403.6763 [astro-ph.CO]. 
[41] L. Modesto and A. Randono, “Entropic Corrections to Newton’s Law,” arXiv:1003.1998 [hep-th]. 
[42] C. M. Ho, D. Minic, and Y. J. Ng, “Quantum Gravity and Dark Matter,” Gen. Rel. Grav. 43 (2011) 2567–2573, arXiv:1105.2916 [gr-qc]. [Int. J. Mod. Phys.D20,2887(2011)]. 
[43] S. H. Hendi and A. Sheykhi, “Entropic Corrections to Einstein Equations,” Phys. Rev. D83 (2011) 084012, arXiv:1012.0381 [hep-th]. 
[44] M. E. McCulloch, “Quantised inertia from relativity and the uncertainty principle,” EPL (Europhysics Letters) 115 (Sep, 2016) 69001, arXiv:1610.06787 [physics.gen-ph]. 
[45] F. R. Klinkhamer and M. Kopp, “Entropic gravity, minimum temperature, and modified Newtonian dynamics,” Mod. Phys. Lett. A26 (2011) 2783–2791, arXiv:1104.2022 [hep-th]. 
[46] P. V. Pikhitsa, “MOND reveals the thermodynamics of gravity,” arXiv:1010.0318 [astro-ph.CO]. 
[47] C. M. Ho, D. Minic, and Y. J. Ng, “Cold Dark Matter with MOND Scaling,” Phys. Lett. B693 (2010) 567–570, arXiv:1005.3537 [hep-th]. 
[48] D. Edmonds, D. Farrah, C. M. Ho, D. Minic, Y. J. Ng, and T. Takeuchi, “Testing MONDian Dark Matter with Galactic Rotation Curves,” Astrophys. J. 793 (2014) 41, arXiv:1308.3252 [astro-ph.CO]. 
[49] D. Edmonds, D. Farrah, C. m. Ho, D. Minic, Y. J. Ng, and T. Takeuchi, “Testing Modified Dark Matter with Galaxy Clusters: Does Dark Matter know about the Cosmological Constant?,” Int. J. Mod. Phys. A32 no. 18, (2017) 1750108, arXiv:1601.00662 [astro-ph.CO]. 
[50] Y. J. Ng, D. Edmonds, D. Farrah, D. Minic, T. Takeuchi, and C. M. Ho, “Modified Dark Matter,” in Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes): Rome, Italy, July 12-18, 2015, vol. 4, pp. 3942–3947. 2017. arXiv:1602.00055 [astro-ph.CO]. 
[51] M. Milgrom and R. H. Sanders, “Perspective on MOND emergence from Verlinde’s "emergent gravity" and its recent test by weak lensing,” arXiv:1612.09582 [astro-ph.GA]. 
[52] F. Lelli, S. S. McGaugh, and J. M. Schombert, “Testing Verlinde’s Emergent Gravity with the Radial Acceleration Relation,” Mon. Not. Roy. Astron. Soc. 468 no. 1, (2017) L68–L71, arXiv:1702.04355 [astro-ph.GA]. 
[53] K. Pardo, “Testing Emergent Gravity with Isolated Dwarf Galaxies,” arXiv:1706.00785 [astro-ph.CO]. 
[54] A. Hees, B. Famaey, and G. Bertone, “Emergent gravity in galaxies and in the Solar System,” Phys. Rev. D95 no. 6, (2017) 064019, arXiv:1702.04358 [astro-ph.GA]. 
[55] F. Lelli, S. S. McGaugh, J. M. Schombert, and M. S. Pawlowski, “One Law to Rule Them All: The Radial Acceleration Relation of Galaxies,” Astrophys. J. 836 no. 2, (2017) 152, arXiv:1610.08981 [astro-ph.GA]. 
[56] P. Salucci, “Dark Matter in Galaxies: evidences and challenges,” Found. Phys. 48 no. 10, (2018) 1517–1537, arXiv:1807.08541 [astro-ph.GA]. 
[57] C. Di Paolo, P. Salucci, and J. P. Fontaine, “The Radial Acceleration Relation (RAR): Crucial Cases of Dwarf Disks and Low-surface-brightness Galaxies,” Astrophys. J. 873 no. 2, (2019) 106, arXiv:1810.08472 [astro-ph.GA]. 
[58] H. Narnhofer, I. Peter, and W. E. Thirring, “How hot is the de Sitter space?,” Int. J. Mod. Phys. B10 (1996) 1507–1520. [,603(1996)]. 
[59] S. Deser and O. Levin, “Accelerated detectors and temperature in (anti)-de Sitter spaces,” Class. Quant. Grav. 14 (1997) L163–L168, arXiv:gr-qc/9706018 [gr-qc]. 
[60] T. Jacobson, “Comment on ‘Accelerated detectors and temperature in anti-de Sitter spaces’,” Class. Quant. Grav. 15 (1998) 251–253, arXiv:gr-qc/9709048 [gr-qc]. 
[61] M. Cadoni, “Conformal symmetry of gravity and the cosmological constant problem,” Phys. Lett. B642 (2006) 525–529, arXiv:hep-th/0606274 [hep-th]. 
[62] E. Witten, “Quantum gravity in de Sitter space,” in Strings 2001: International Conference Mumbai, India, January 5-10, 2001. 2001. arXiv:hep-th/0106109 [hep-th]. 
[63] G. Dvali and C. Gomez, “Quantum Compositeness of Gravity: Black Holes, AdS and Inflation,” JCAP 1401 (2014) 023, arXiv:1312.4795 [hep-th]. 
[64] S. Das and R. K. Bhaduri, “Dark matter and dark energy from a Bose-Einstein condensate,” Class. Quant. Grav. 32 no. 10, (2015) 105003, arXiv:1411.0753 [gr-qc]. 
[65] S. Das and R. K. Bhaduri, “Bose-Einstein condensate in cosmology,” arXiv:1808.10505 [gr-qc]. 
[66] S. Das and R. K. Bhaduri, “On the quantum origin of a small positive cosmological constant,” arXiv:1812.07647 [gr-qc]. 
[67] S. McGaugh, “Milky Way Mass Models and MOND,” Astrophys. J. 683 (2008) 137–148, arXiv:0804.1314 [astro-ph]. 
[68] R. H. Sanders, “A historical perspective on modified Newtonian dynamics,” Can. J. Phys. 93 no. 2, (2015) 126–138, arXiv:1404.0531 [physics.hist-ph]. 
[69] P. D. Mannheim, “Is dark matter fact or fantasy? – clues from the data,” arXiv:1903.11217 [astro-ph.GA]. 
[70] M. Tuveri and M. Cadoni, “A new perspective on galactic dynamics,” arXiv:1904.08209 [gr-qc]. 
[71] B. Famaey and S. McGaugh, “Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions,” Living Rev. Rel. 15 (2012) 10, arXiv:1112.3960 [astro-ph.CO].

3 comments:

neo said...

this paper ref 37 Mond as regime of QG Lee Smolin

belongs along with Verlinde, the idea that baryonic matter interacts with dark energy to produce MOND

you've previously blog both on gravitational self-interaction as source of MOND and conformal gravity as giving rise to MOND

what would happen if you combine these approaches?

andrew said...

Some day when I have lots of free time at my disposal I'll look at the technical guts of the leading proposals and see how they achieve similar things via different approaches. Until then, I'll simply collect interesting papers for further examination.

neo said...

in news,

there are articles that

1- question Mcgaugh's RAR and
2- second darkmatterless galaxy questioning again MOND

ref
https://phys.org/news/2019-04-dark-alternate-explanations.html

https://www.express.co.uk/news/science/1121154/Dark-matter-space-discovery-dark-matter-energy-galaxies-universe