Wednesday, January 11, 2023

More Doubt Cast On Reactor Neutrino Anomalies

Yet another apparent experimental observation discrepancy from the Standard Model bites the dust, although, this particular one had already been in doubt anyway. I am personally confident there are no beyond the Standard Model sterile neutrinos.

Discrepancies between reactor neutrino experiments and theory may be the result of errors in the analysis of electron data that form the basis of the neutrino predictions.
From here. A synopsis of the Letter in the journal publishing it explains that:
Several experiments have been set up outside nuclear reactors to record escaping antineutrinos. The data generally agrees with theory, but at certain energies, the antineutrino flux is 6–10% above or below predictions. These so-called reactor antineutrino anomalies have excited the neutrino community, as they could be signatures of a hypothetical sterile neutrino (see Viewpoint: Getting to the Bottom of an Antineutrino Anomaly). But a new analysis by Alain Letourneau from the French Atomic Energy Commission (CEA-Saclay) and colleagues has shown that the discrepancies may come from experimental biases in associated electron measurements.

The source of reactor antineutrinos is beta decay, which occurs in a wide variety of nuclei (more than 800 species in a typical fission reactor). To predict the antineutrino flux, researchers have typically used previously recorded data on electrons, which are also produced in the same beta decays. This traditional method takes the observed electron spectra from nuclei, such as uranium-235 and plutonium-239, and converts them into predicted antineutrino spectra. But Letourneau and colleagues have found reason to doubt the electron measurements.

The team calculated antineutrino spectra—as well as the corresponding electron spectra—using a fundamental theory of beta decay. This method works for some nuclei, but not all, so the researchers plugged the gaps using a phenomenological model. They were able to treat all 800-plus reactor beta decays, finding “bumps” in the antineutrino flux that agree with observations. Similar features are predicted for electron spectra, but they don’t show up in the data. The results suggest that an experimental bias in electron observations causes the reactor antineutrino anomalies. To confirm this hypothesis, the researchers call for new precision measurements of the fission electrons.
The Letter and its abstract are as follows:
We investigate the possible origins of the reactor antineutrino anomalies in norm and shape within the framework of a summation model where β− transitions are simulated by a phenomenological model of Gamow-Teller decay strength. The general trends of divergence from the Huber-Mueller model on the antineutrino side can be reproduced in both norm and shape. From the exact electron-antineutrino correspondence of the summation model, we predict similar distortions in the electron spectra, suggesting that biases on the reference spectra of fission electrons could be the cause of the anomalies.

A science article aimed at the general public ends its story on this paper with this quote from a neutrino physicist:
“We still have other anomalies in neutrino physics that we cannot explain,” she says. But taking all neutrino studies together, Huber says, the evidence for the sterile neutrino isn’t very strong: “It’s not a good global fit to the data.”

The preprint of this Letter was previously blogged in this post

No comments: