Tuesday, May 30, 2023

Evidence Of Another Predicted Higgs Boson Decay Channel

[C]ollaborative effort [by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) has] resulted in the first evidence of the Higgs boson decay into a Z boson and a photon. The result has a statistical significance of 3.4 standard deviations, which is below the conventional requirement of 5 standard deviations to claim an observation. The measured signal rate is 1.9 standard deviations above the Standard Model prediction.

From here.

Thus, there is strong, but not conclusive evidence of this predicted decay channel of the Higgs boson at a strength consistent with the Standard Model prediction.

This updates results most recently discussed here. This post noted in the pertinent part:

What do we know about how strong the fit of what we observe to the SM Higgs is?

Scientists haven't established beyond all doubt that the Higgs boson we have seen is the SM Higgs boson yet, but every few months since it has been discovered the constraints on differences from the SM Higgs have gotten smaller and more restricted. The data has also ruled out many hypotheses for additional Higgs bosons.

There is basically no data that is contrary to the predictions of the SM Higgs hypothesis made about 50 years ago (subject to determining its mass), and for a given Higgs boson mass the properties of the SM Higgs boson are completely predetermined with no wiggle room at all down to parts per ten million or better.

The global average value for the mass of the Higgs boson is currently 125.25±0.17 GeV, a relative accuracy of about 1.4 parts per thousand.

There is also basically no data strongly suggesting one or more additional BSM Higgs bosons (although there is a bit of an anomaly at 96 GeV), even though BSM Higgs bosons aren't directly ruled out yet above the hundreds of GeVs. BSM Higgs bosons are also allowed in pockets of allowed parameter spaces at lower masses if the properties of the hypothetical particles are just right. For example, new Higgs bosons with a charge of ± 2 are ruled out at masses up to about 900 GeV, and so are many other heavy Higgs boson hypotheses. Indirect constraints also greatly limit the parameter space of BSM Higgs bosons unless they have precisely the right properties (which turn out to be not intuitively plausible or well-motivated theoretically).

The data strongly favor the characterization of the observed Higgs boson as a spin-0 particle, just like the SM Higgs boson, and strongly disfavors any other value of spin for it.

The data is fully consistent at the 0.6 sigma level with an even parity SM Higgs boson, see here, while the pure CP-odd Higgs boson hypothesis is disfavored at a level of 3.4 standard deviations. In other words, the likelihood that the Higgs boson is not pure CP-odd is about 99.9663%.

A mix of a CP-odd Higgs boson and a CP-even Higgs boson of the same mass is (of course) harder to rule out as strongly, particularly if the mix is not equal somehow and the actual mix is more CP-even than CP-odd. There isn't a lot of precedent for those kinds of uneven mixings, however, in hadron physics (i.e., the physics of composite QCD bound particles), for example.

Eight of the nine Higgs boson decay channels theoretically predicted to be most common in a SM Higgs of about 125 GeV have been detected. Those channels, ranked by branching fraction are:

b-quark pairs, 57.7% (observed)
W boson pairs, 21.5% (observed)
gluon pairs, 8.57%
tau-lepton pairs, 6.27% (observed)
c-quark pairs, 2.89% (observed May 2022)
Z boson pairs, 2.62% (observed)
photon pairs, 0.227% (observed)
Z boson and a photon, 0.153% (observed April 2022)
muon pairs, 0.021 8% (observed)
electron-positron pairs, 0.000 000 5%

All predicted Higgs boson decay channels, except gluon pairs, with a branching fraction of one part per 5000 or more have been detected.

Decays to gluon pairs are much harder to discern because the hadrons they form as they "decay" are hard to distinguish from other background processes that give rise to similar hadrons to those from gluon pairs at high frequencies. Even figuring out what the gluon pair decays should look like theoretically due to QCD physics, so that the observations from colliders can be compared to this prediction, is very challenging.

The total adds 99.9518005% rather than to 100% due to rounding errors, and due to omitted low probability decays including strange quark pairs (a bit less likely than muon pairs), down quark pairs (slightly more likely than electron-positron pairs), up quark pairs (slightly more likely than electron positron pairs), and asymmetric boson pairs other than Z-photon decays (also more rare than muon pairs).

The Higgs boson doesn't decay to top quarks, but the measured top quark coupling is within 10% of the SM predicted value in a measurement with an 18% uncertainty at one sigma in one kind of measurement, and within 1.5 sigma of the predicted value using another less precise kind of measurement.

The Particle Data Group summarizes the strength of some of the measured Higgs boson couplings relative to the predicted values for the measured Higgs boson mass, and each of these channels is a reasonably good fit relative to the measured uncertainty in its branching fraction.

Combined Final States = 1.13±0.06
W W∗= 1.19±0.12
Z Z∗= 1.01±0.07
γγ= 1.10±0.07
bb= 0.98±0.12
μ+μ−= 1.19±0.34
τ+τ−= 1.15+0.16−0.15
ttH0Production = 1.10±0.18
tH0production = 6±4

The PDG data cited above predates the cc decay and Zγ channel discovery made this past spring, so I've omitted those from the list above in favor of the data from the papers discovering the new channels.

One of these papers shows that the branching fraction in the Zγ channel relative to the SM expectation is μ=2.4±0.9. The ratio of branching fractions B(H→Zγ)/B(H→γγ) is measured to be 1.5+0.7−0.6, which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.

The branching fraction of the cc channel isn't very precisely known yet, but isn't more than 14 times the SM prediction at the 95% confidence level.

The Higgs boson self-coupling is observationally constrained to be not more than about ten times stronger than the SM expected value, although it could be weaker than the SM predicted value. But the crude observations of its self-coupling are entirely consistent with the SM expected value so far. This isn't a very tight constraint, but it does rule out wild deviations from the SM paradigm.

The width of the Higgs boson (equivalently, its mean lifetime) is consistent to the best possible measurements with the theoretical SM prediction for the measured mass. The full width Higgs boson width Γ is 3.2+2.8−2.2MeV, assuming equal on-shell and off-shell effective couplings (which is a quite weak assumption). The predicted value for a 125 GeV Higgs boson is about 4 MeV.

There are really no well motivated hypotheses for a Higgs boson with properties different from the SM Higgs boson that could fit the observations to date this well.

For a particle that has only been confirmed to exist for ten and a half years, that's a pretty good set of fits. And, the constraints on deviations from the SM Higgs boson's properties have grown at least a little tighter every year since its discovery announced on July 4, 2012.

No comments: