The Hubble tension has, for whatever reason, been treated as a more serious challenge to the LambdaCDM "standard model of cosmology", which contrary to the statement highlighted below in the abstract, actually has many other serious discrepancies with astronomy observations. A new preprint examines its implications for the model.
Differences in the values of the Hubble constant obtained from the local universe and the early universe have resulted in a significant tension. This tension signifies that our understanding of cosmology (physical processes and/or cosmological data) is incomplete. Some of the suggested solutions include physics of the early Universe.
In this paper we aim to investigate common features of various early universe solutions to the Hubble constant tension. The physics of the early universe affects the size of the sound horizon which is probed with the Cosmic Microwave Background (CMB) data. Within the standard model, the size of the horizon (within limits of current measurements) is affected by processes that could occur between (approximately) 1 day after the Big Bang and the last scattering instant. We focus on simple extensions incorporating Early Dark Energy (EDE) and show how such a model affects the inferred values of the Hubble constant. We compare this model to LambdaCDM models using MCMC analysis, likelihoods over the parameter space and Bayesian evidence. The MCMC analysis shows that EDE leads to a decrease in the size of the sound horizon that is consistent with H0 = 73.56 km/s/Mpc but we also show that MCMC analysis favours increasing redshift and proportion of EDE. The Bayesian evidence favours our EDE model for very narrow, finely-tuned parameter space.
The LambdaCDM model used for comparison has good evidence across a wide parameter space. We interpret this as an indication that more sophisticated models are required. We conclude that if the Hubble tension were to be related to the physics of the early universe, EDE could be used as a window to explore conditions of the early universe and extend our understanding of that era.
Gawain Simpson, Krzysztof Bolejko, Stephen Walters, "Beyond LambdaCDM: How the Hubble tension challenges early universe physics" arXiv:2507.08479 (July 11, 2025).
No comments:
Post a Comment