Tuesday, January 13, 2026

Baryonic Feedback

One of the ways to overcome the discrepancies between dark matter particle theories and what we observe is to attribute the discrepancies to baryonic feedback effects that are not terribly well understood. An ambitious new paper with many co-authors examines feedback effects in multiple cosmology simulations. The trouble is that the feedback seems to aggravate the discrepancies between what of observed and what simulations predict, rather than resolving them. 

Galaxy cores behave more or less like galaxies without dark matter phenomena, while the dynamics of galactic fringes are dominated by dark matter phenomena. And, more massive galaxies are less proportionately dark matter phenomena driven than less massive galaxies. Yet, these are just the opposite of the effects of baryonic feedback in the simulations considered.

Baryonic processes such as radiative cooling and feedback from massive stars and active galactic nuclei (AGN) directly redistribute baryons in the Universe but also indirectly redistribute dark matter due to changes in the gravitational potential. In this work, we investigate this "back-reaction" of baryons on dark matter using thousands of cosmological hydrodynamic simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, including parameter variations in the SIMBA, IllustrisTNG, ASTRID, and Swift-EAGLE galaxy formation models. 
Matching haloes to corresponding N-body (dark matter-only) simulations, we find that virial masses decrease owing to the ejection of baryons by feedback. Relative to N-body simulations, halo profiles show an increased dark matter density in the center (due to radiative cooling) and a decrease in density farther out (due to feedback), with both effects being strongest in SIMBA (> 450% increase at r < 0.01 Rvir). The clustering of dark matter strongly responds to changes in baryonic physics, with dark matter power spectra in some simulations from each model showing as much as 20% suppression or increase in power at k ~ 10 h/Mpc relative to N-body simulations. 
We find that the dark matter back-reaction depends intrinsically on cosmology (Omega_m and sigma_8) at fixed baryonic physics, and varies strongly with the details of the feedback implementation. These results emphasize the need for marginalizing over uncertainties in baryonic physics to extract cosmological information from weak lensing surveys as well as their potential to constrain feedback models in galaxy evolution.
Matthew Gebhardt, et al., "Cosmological back-reaction of baryons on dark matter in the CAMELS simulations" arXiv:2601.06258 (January 9, 2026).

A new paper suggesting an interacting dark energy model is also intriguing.
Recent DESI baryon acoustic oscillation data reveal deviations from ΛCDM cosmology, conventionally attributed to dynamical dark energy (DE). We demonstrate that these deviations are equally, if not better, explained by interactions between dark matter and dark energy (IDE), without requiring a time-varying DE equation of state. Using a unified framework, we analyze two IDE models--coupled quintessence and coupled fluid--against the latest CMB (Planck, ACT, SPT), DESI BAO, and SN (including DES-Dovekie recalibrated) data. Both IDE scenarios show robust evidence for non-vanishing interactions at the 3-5σ level, with marginalized constraints significantly deviating from the ΛCDM limit. This preference persists even under DES-Dovekie SN recalibration, which weakens dynamical DE evidence. Crucially, for the same number of free parameters, IDE models provide fits to low- and high-redshift data that match or exceed the performance of the CPL dynamical DE parametrization. Our results establish IDE as a physically motivated alternative to dynamical DE, highlighting the necessity of future cosmological perturbation measurements (e.g., weak lensing, galaxy clustering) to distinguish between these paradigms.
Tian-Nuo Li, et al., "Strong Evidence for Dark Sector Interactions" arXiv:2601.07361 (January 11, 2026).

See also a new paper exploring Moffat's modified gravity approach, and a new paper examining the warm dark matter hypothesis.

No comments: